- Faça a leitura do texto abaixo com atenção:
A Matemática é a Ciência que estuda os movimentos quantitativos e das formas do Universo. Para os movimentos quantitativos se desenvolveu a linguagem numérica. Para as formas do
Universo, criou-se a linguagem geométrica. A Geometria surgiu quando o homem tentou lidar com as formas da natureza, buscando representá-las simbolicamente. Já a Geometria Espacial começa quando o homem produz o tijolo (ou os blocos de pedra) usados em construções. É quando ele descobre aspectos da natureza que até aquele momento não tinha percebido, como o espaço e a sua grandeza, o volume. Foi na Grécia Antiga (do século V ao século II a.C.) que grandes pensadores, entre eles Pitágoras (570 a.C. a 480 a.C.), iniciaram a grande sistematização e o desenvolvimento lógico da linguagem geométrica.
1. O espaço
É o marco físico que nos rodeia e em que vivemos. Uma casa, uma poltrona e uma maçã, por exemplo, não são corpos geométricos, mas estão no espaço. Os prismas, as pirâmides, o cilindro e a esfera são corpos geométricos no espaço.
Em Geometria, o espaço é um conjunto ilimitado de pontos. Nesse espaço consideram-se trêsdimensões: comprimento, altura e largura. |
|
Figura 1 |
2. O ponto
O espaço é formado por uma infinidade de pontos (Figura 1, ao lado). Um ponto não tem dimensões. Para lembrar:
Se tomarmos um ponto P do espaço, diremos que por este ponto passam infinitas retas: é a radiação de retas que passa pelo ponto P. |
3. A reta
A reta é uma extensão de uma única dimensão. Ela só tem comprimento e, por definição, não tem largura, nem altura.
• | A reta é determinada por dois pontos distintos e também por dois planos que se cortam. Por exemplo, pelos pontos S e T do espaço passa uma única reta, que é r (Figura 2, abaixo). |
|
Figura 2 |
Assim, dois vértices consecutivos de um cubo, por exemplo, E e F, determinam uma aresta e a reta que a contém (Figura 3, abaixo).
|
Figura 3 |
4. O plano
Três pontos não-alinhados no espaço determinam um plano.
O plano também se verifica em:
• | Duas retas paralelas. |
• | Duas retas que se cortam. |
• | Uma reta e um ponto não-pertencente a ela. |
Dado um plano no espaço, existem infinitos pontos que pertencem a ele.
Para lembrar:
Os pontos que pertencem a um mesmo plano chamam-se coplanares. |
Existem também infinitos pontos que não pertencem ao plano.
Os pontos R, S e T, por exemplo, pertencem ao plano ; os pontos A, B, C e D não. Os pontos R,S e T são coplanares (Figura 4, abaixo).
|
Figura 4 |
Geralmente, os planos são descritos expressando-se 3 de seus pontos não-alinhados A, B e C, ou com uma letra grega:,,(Figura 5, abaixo).
Uma reta pertence a um plano se todos os pontos dessa reta estão no plano. Se duas retas pertencem ao mesmo plano, diremos que são coplanares. |
|
Figura 5 |
As retas r e s pertencem ao plano ; r e s são coplanares. As retas t e v não pertencem ao plano (Figura 6, abaixo):
|
Figura 6 |
Propriedades do plano:
Quando um pedreiro está colocando ladrilhos num piso, coloca uma régua sobre dois pontos que estão num plano horizontal. Ele verifica essa horizontalidade com um nível de bolha (Figura 7, abaixo). Depois, vai colocando ladrilhos de modo que encostem na régua e, assim, garante que fiquem num plano horizontal. O pedreiro está aplicando uma propriedade característica do plano:
Se uma reta tem dois pontos num plano, ela está toda contida no plano. |
|
Figura 7 |
• | Qualquer reta que esteja contida num plano o divide em dois semiplanos (Figura 8, abaixo): |
|
Figura 8 |
5. Classificação das linhas
No espaço, duas retas podem estar em três posições distintas, como mostra a Figura 9, abaixo. Assim:
• | Retas concorrentes: cortam-se num ponto. |
• | Retas reversas: não têm nenhum ponto em comum e estão situadas em planos distintos. |
• | Retas paralelas: não têm nenhum ponto em comum e estão situadas no mesmo plano. |
|
Figura 9 |
Observe, agora, o prisma da Figura 10, abaixo. Nesse prisma, consideramos as retas que formam arestas. Cada face do prisma representa um plano. Assim:
• | As retas z e o estão no mesmo plano e são paralelas. |
• | As retas z e x estão no mesmo plano e são concorrentes (perpendiculares). |
• | As retas z e v não estão no mesmo plano. São, portanto, reversas. |
|
Figura 10 |
6. Posições relativas de reta e plano
Uma reta pode pertencer a um plano. Caso contrário, pode ser paralela ou concorrente.
É paralela se a reta e o plano não têm nenhum ponto em comum. É concorrente se plano e reta têm um ponto em comum.
• | A reta r pertence ao plano . |
• | A reta t é paralela ao plano . |
• | A reta s é concorrente ao plano . |
• | A reta u é perpendicular a todas as retas de que passam pelo ponto P. |
Veja a representação deste exemplo na Figura 11, abaixo:
|
Figura 11 |
Para lembrar:
|
Figura 12 |
Se tomarmos um ponto P exterior a uma reta, podemos traçar por ele apenas uma perpendicular a esta reta (Figura 12). |
Ao contrário, podem-se traçar por um ponto P de uma reta infinitas perpendiculares a esta reta (Figura 13, abaixo):
|
Figura 13 |
7. Posições relativas de dois planos no espaço
Dois planos no espaço podem ser: coincidentes, paralelos ou concorrentes. São coincidentes se estão no mesmo plano; são paralelos se não têm nenhum ponto em comum; e são concorrentes se têm uma reta em comum.
• | Os planos e , da Figura 14, abaixo, são coincidentes. |
• | Os planos esão paralelos. |
• | Os planos esão concorrentes. |
|
Figura 14 |
8. Ângulo diedro
Se observarmos dois planos concorrentes, veremos que se formam quatro semiplanos.
Cada uma dessas quatro porções do espaço é um ângulo diedro.
|
Figura 15 |
Cada semiplano chama-se face e a reta de interseção das faces do diedro recebe o nome de aresta (Figura 15).
9.Volume
É a medida que nos indica o espaço ocupado por um corpo.
Se tomarmos um cubo de 1 cm de aresta, diremos que o volume que ocupa é 1 cm cúbico e o indicamos por 1 cm3 (Figura 16, abaixo):
|
Figura 16 |
Um corpo construído com as mesmas peças que o outro ocupa o mesmo volume, embora possa assumir uma forma distinta, como indica a Figura 17, abaixo: |
Texto retirado do site www.klickeducacao.com.br para pesquisa e estudo dos alunos do 2º ano do Ensino Médio.